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INTEGRATION IN GEOPHYSICAL INVERSE PROBLEMS 

(INTEGRATED GEOPHYSICS) 

Inverse problems of single geophysical methods – gravics [1], electric exploration [2], 

seismic [3-6], methods based on potential geophysical fields [7] – have been intensively 

investigated over the past three decades in theoretical Geophysics.  

 However, when pragmatically studying earth constitution and searching for mineral 

deposits, normally to advance exploration efficiency, a certain set of geophysical methods 

allowing for a more diversified description of the geological feature rather than an isolated 

method is used. Nevertheless, if several methods are applied, each of them, in fact, is used 

independently and doesn’t always allow for obtaining sufficient (unambiguous and unalterable) 

information. Autonomously obtained results of separate methods are interconnected without 

applying integrated mathematical models and, consequently, the results obtained is integration 

quantitative evidence which is not Physics and Mathematics level driven. 

In papers [8, 9] the authors have attempted to combine the models of different methods 

within the framework of unified statement of geophysical inverse problems (integral 

Geophysics). A similar approach is employed in the work [10].   In addition to the theoretical 

works, the integral Geophysics inverse problems system science approaches for integral 

information environment formation have appeared recently [11]. 

All such approaches require integral mathematical models to be formed and theoretically 

analyzed. 

This work shows that if inverse problems that are integrated at the statistical level are 

applied to co-processing of fields of different geophysical nature, correctness set (guaranteed 

uniqueness and fixity sets) expands and accuracy of the environment parameter definition 

increases. The constructive method for solving combined inverse problems based on 

minimization of a certain integral objective functional is suggested. 

Let us consider a set of operator equations     

(1)        u f , ,x t  M  

where  , 0, , 1,..., ,nx D R t m      M  - is a certain matrix with     differential 

operator of order 2.k   The equation set (1) describes different geophysical fields 
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 1u u ,...,u   , set up by the sources  1f ,...,f f    which probably are of absolutely 

different physical nature. 

 Let us assume that    0, , ,Q D q x t Q      and on Q  relevant initial and end 

conditions are established which ensure uniqueness of solution for a set of direct problems for  

m  equations (1) in certain smooth enough classes of functions. 

 Assume further that operators   , , /xd x D t    M M  are known within the 

accuracy of vector functions       1 ,..., Ld x d x d x    which occur at random and follow a 

multi-dimensional regular distributions which correspond to known vectors of mathematical 

expectation and covariance matrices and satisfy I  - determinate constraint equations of the type 

   0, 1,...,iF d x i I   . Let us assume that the connections are of such a nature that allow for 

distinguishing 
1

m

L L I
 

   of independent parameters in mathematical models of methods 

combined. Furthermore, let’s denote these parameters by generalized vector 

      1 ,..., Lx x x    and express the constraint equations as  d d   . Thus, we will 

assume hereafter that the aprior averages  
0

x  and covariance matrices  , , ,q q q q Q
    are 

known. 

 The inverse problem of complex quantitative interpretation of geophysical investigations 

is to find generalized vector of parameters  x  of a set of operators  , 1,...,m  M using the 

information of the type 

(2)             v , , ; ,r t u r t d r t       

Here ,r R D R    is a certain manifold on which information for   method is measured, 

 ,r t  - is a random disturbance which has a regular distribution with zero mean and a known 

covariance matrix  ,q q


 . It is also assumed that noise   is statistically independent on  . 

Let us remark here that by the assumed random nature of vector sought and presence of 

noise  ,r t   in data (2) the solution of the integral inverse problem is to be considered as  

finding of optimal estimate  ˆ x  for generalized vector of parameters  x  [12]. 

    Lemma 1. Let us assume that covariance matrices , , 1,2,..., ,m
      are written as 

           , ,q q G x t q q q q q


           , 

where ,G G
   - are positively defined symmetric matrices with L Lu      respectively. 

Then the problem of finding of optimal estimate ̂  using the method of peak aposterior 

probability density is equivalent to search for generalized vector of parameters   which 

minimizes functional. 

(3)                0 0
11 2

v u ; , v ; ,
m

B B

J q d u q d     


      


      . 

Here ,
B

 - vector functions dot product in Hilbert weight space BH : 

(4)           a,b a bT

B

Q

q B q q dq  , 
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(5)       1

1 RB q G
  , 

(6)          1

2B q G x t  , 

and 
R  - zero order generalized function with support which is the same as variety R . 

The proof is based on Bayesian theorem and use of aprior statistical assumptions on 

noise and the required parameters of vector  . 

Let’s look at the adjoint equation 

(7)        u ,g x t  

  M  

with zero boundary and initial conditions in  0,Q D    (the latter in case of hyperbolic 

operator M  is: u 0, u 0
t T t

t
 

 


  . We can show that for solving the equation (7) and solving 

u  equation (1) with zero boundary and initial conditions (the latter are standard for hyperbolic 

operator: 
0 0

u 0,u 0
t t

  
   ) there holds the equality 

(8)      
0 0

u , u ,f
B B

g   

 . 

Here 
0B  - is the dot product identity matrix (4). 

    In this regard let’s note some details of fundamental solution of the adjoint equation (7) in 

case of the hyperbolic operator M . For example, if  M  - is a wave operator with constant 

propagation velocity a . Then fundamental solution of the adjoint problem will be 

(9)  
    

, ,
4

t x t
x t

a x

  







  
E    1, 0,

0, 0.{ t

tt 

   

Therefore, in the adjoint problem time changes to the side of negative values – from   to 

0, whereas for the wave equation having the following fundamental solution 

 
    

  1, 0,

0, 0,, ,
4

t

t

t x t T
x t t

a x

  




 

  

 
 E  

it may change to the side of positive values – from 0 to  . 

Lemma 2. Let’s assume that  u ,v x t
- is a solution of the adjoint equation (7) having the 

following right side 

(10)        1, v , u , ;d
v vv v v v Rg x t r t r t G    

and zero initial-boundary conditions. Then if the inequation works 

(11) 1 1 2

0
1

u u
,

v

m
v v

v Q

G G dq c
 



 




  
  

   
  

where 
0c - is an arbitrary constant and the norm under the integral sign represents Euclidean 

norm of the matrix with L L , Frechet derivative of the functional (3) exists and is presented as 

(12)    1

0

1 0

2 u u

T
Tm

v
v vJ dt G 



  


 



      
    


M
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     The proof is realized using functional perturbation (3). The condition (11) is sufficient 

for Frechet derivative existence. As for the functional derivative (12), it is determined on the 

base of the method for equation perturbation (1) using the relation (8). 

Remark 1. The problem of adjoint equation solution (7) with the right side (10) in case 

of hyperbolic operator 
vM  is tightly coupled with the widely known seismic survey problem of 

wave field continuation [13] and also with optical wavefront conjugation using nonlinear optical 

media (dynamic holography) [14]. In fact, in conformity with the structure of fundamental 

solution (9) of the adjoint equation (7), the sources of the kind (10) at time t    start emitting 

information registered as «the last», and at the end of emission moment  0t   signals are 

generated into the medium which are registered as «the first» when being viewed. The adjoint 

problem solution is widely used in meteorology for problems of natural environment protection 

[15], where the solution  u ,v x t
 is referred to as value function. 

Definition 1. We denote 
o

c

M  set of vector-functions ( )x  so that the inequation (13) 

holds for them  

 

(13)    
2

2

0 0,
B

c      . 

Here scalar product id defined by the formulas (4), (6), 0  - aprior average, с – some constant. It 

can be shown that 
o

c

M is a convex and feebly compact subset of Hilbert weight space 
2BH . 

Lemma 3. Let 
0

c

M be some fixed set of vector-functions ( )x of the type (12) for which 

the conditions of lemmas 1 and 2 are satisfied. Suppose also that for arbitraries 
0

1 2, c

  M  the 

following inequality holds 

 1 1 2 2 1 2 2

1 2
1

u u u u 2 0
m

v v
v v v v

v Q

dq c 
 

 
 

 



                                  


M M

, 

where u ,ui i

v v

 - solutions of the equations (1) and (7) with 
1, 1,2i   fixed. Then the solution of 

the inverse problem (1), (2) on set 
0

c

M  exists, the only and any minimizing sequence 

 
0
, 1,2...j c j  M , is weakly convergent to it irrespective of the initial estimate. 

The proof is based on lemmas 1,2 and laying down great convexity of the functional (3) 

on set 
0

c

M . 

Remark 2. The set 
0

c

M  is referred to as correctness set in the theory of conditionally 

correct problems. The parameter c  has the meaning of radius of this set. 

Definition 2. Let 
mY be the higher of the correctnesses sets 

0
, 0c c M , on each of 

them lemmas 1-3 conditions are satisfied for m  integrative methods. We will call the set mY  

limit correctness set for the indexed methods 1,...,v m . 

Theorem 1. Let  , 1,..., ,mY m M  be the complex of limit sets of correctnesses for 

M  integral Geophysics inverse problems (1), (2), all of which are based on integration of m  
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methods  1,...,v m . Then we have embedding of sets 
mY  of the type 

1 2 ... MY Y Y   , along 

with this the radius   of  limit set of correctness is defined by the recurrence relation: 

 2 2

1 1 1, , 2,...,s s M         , where   is the radius of correctness of a particular   

method. 

The proof follows from the lemmas 1-3. 

Let us consider the issues of accuracy and stability of solution of the complex inverse 

problem (1), (2). The accuracy of determination of initial parameters is known to be 

characterized by the value of variance of their estimate. Let   be the variance of estimate l  of 

component of the vector  1,..., L    in integral statement of the inverse problem, 
vl - a 

similar estimate which is obtained only by solution of the problem using the method with 0, lv 

index – square root of l diagonal element of the matrix which is inverse to the covariance matrix

G . Stability of inverse problem solution is known to be dependent on «ravine» of the objective 

functional which in turn is characterized by Fisher matrix condition exponent [12]. The less is 

this exponent, the less is «ravine», that is the higher is stability and minimal solution accuracy 

  min l
l

 . Let   be the condition exponent of the matrix 1, vG  - is  the condition exponent of 

Fisher matrix of v  method,  - integral statement condition exponent of Fisher matrix. 

  Theorem 2. Solution of the integral inverse problem (1), (2) on the set of correctness 

0

c

M  is characterized by the estimates of accuracy and stability as follows: 

 

   

(1 )2 2 0

1,

1,

2 max , 1..., ,

max , , max

m

l vl l
v m

v
v m

l L  

    







 

 
   

The proof is based on lemmas 1,2 and properties of symmetrical positively defined 

matrices. 

Remark 3. When estimating stability (the case when stability and accuracy do not 

increase in integration), the equality is possible only if the following three conditions are 

simultaneously fulfilled: there is no correlative connection between the target parameters of 

vector   (the matrix G  is diagonal); there are no crossed parameters in mathematical models 

used; there are no univalently solvable into vector components dv
 determinate constraint 

equations. 

Remark 4. According to the estimated variance l , if the amount of methods is 

increased, integral accuracy of parameters determination improves as a whole. However, direct 

use of the method with big own variance vl , in spite of the fact that it makes negligible 

contribution to the functional (3), may spoil the overall picture. To avoid this, when numerical 

calculation is being carried out, it is apparently necessary to invoke other aprior information – 

experience of specialists on integral interpretation of particular geological features. Such 

technology for quantitative solution of integral Geophysics problems is possible on the basis of 

hybrid expert systems use. 
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